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Abstract 17 

Wetlands play a pivotal role in carbon sequestration but emit methane (CH4), creating 18 
uncertainty in their net climate impact. Although process-based models offer mechanistic 19 
insights into wetland dynamics, they are computationally expensive, uncertain, and difficult to 20 
upscale. In contrast, data-driven models provide a scalable alternative by leveraging extensive 21 
datasets to identify patterns and relationships, making them more adaptable for large-scale 22 
applications. However, their performance can vary significantly depending on the quality and 23 
representativeness of the data, as well as the model design, which raises questions about their 24 
reliability and generalizability in complex wetland systems. To address these issues, we present 25 
a data-driven framework for upscaling wetland CO2 and CH4 emissions, across a range of 26 
machine learning models that vary in complexity, validated against an extensive observational 27 
dataset from the Sacramento-San Joaquin Delta. We show that artificial intelligence (AI) 28 
approaches, including Random Forests, gradient boosting methods (XGBoost, LightGBM), 29 
Support Vector Machines (SVM) and Recurrent Neural Networks (GRU, LSTM), outperform 30 
linear regression models, with RNNs standing out, achieving an R² of 0.72 for daily CO  flux 31 
predictions compared to 0.62 for linear regression, and an R² of 0.60 for CH  flux predictions 32 
compared to 0.54 for linear regression. Interestingly, linear regression performed better than 33 
random forest for methane flux, which highlights the necessity for comparison. Despite that, 34 
interannual variability is less well captured, with annual mean absolute error of 193 gC m-² yr-1 35 
for CO  fluxes and 11 gC-CH  m-² yr-1 for CH  fluxes. By integrating vertically-resolved 36 
atmospheric, subsurface, and spectral reflectance information from readily available sources, 37 
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the model identifies key drivers of wetland CO2 and CH4 emissions and enables regional 38
upscaling. These findings demonstrate the potential of AI methods for upscaling, providing 39 
practical tools for wetland management and restoration planning to support climate mitigation 40 
efforts. 41 

 42 

1. Introduction 43 

Wetlands provide a wide array of ecological, economic, and environmental benefits (Costanza 44 
et al., 2014). They play a crucial role in biodiversity conservation, water purification, flood 45 
control, and climate regulation (Grande et al., 2023; Sharma and Singh, 2021). Significant 46 
attention has been recently given to wetland restoration due to their ability to sequester carbon 47 
from the atmosphere (Lolu et al., 2020; Upadhyay et al., 2020). These ecosystems are highly 48 
effective at storing carbon in their soils because the anaerobic conditions in waterlogged soils 49 
suppress organic matter decomposition, allowing carbon to accumulate over time (Mitsch and 50 
Gosselink, 2015a). However, wetlands can also be significant sources of CH4, a potent 51 
greenhouse gas (Brix et al., 2001), leading to potentially net positive effects of wetlands on 52 
climate warming. The most accurate way to determine the carbon balance in natural 53 
ecosystems is through direct and continuous measurements of carbon and GHG sources and 54 
sinks (Baldocchi et al., 2001). This involves monitoring carbon dynamics using techniques such 55 
as eddy covariance (EC) towers (Aubinet et al., 2012), soil carbon stock assessments (Harrison 56 
et al., 2011), and lateral carbon transport measurements (Ciais et al., 2008). However, these 57 
measurements are time-consuming to carry out, costly, and require specialized instruments and 58 
expertise, limiting their application to a few representative sites globally (Hill et al., 2017; Kumar 59 
et al., 2017). The Ameriflux network offers roughly 500 EC sites comprising about 3600 site 60 
years of data, monitoring carbon fluxes across various ecosystems such as forests, grasslands, 61 
and wetlands (Pastorello et al., 2020). Eddy-covariance site footprints range in scale and are 62 
typically determined by the sensor height and atmospheric turbulence (Chu et al., 2021). Data 63 
from these Ameriflux sites could potentially be upscaled and used for estimating fluxes from 64 
non-monitored sites to obtain regional assessments of carbon balance for various ecosystem 65 
types, including wetlands. 66 

In this study, we focus on nontidal wetlands due to the presence of a cluster of EC towers in a 67 
small region located in the Sacramento-San Joaquin Delta, including three sites, each with over 68 
a decade of continuous data. Reported sequestration rates in wetlands vary widely, influenced 69 
by factors such as climate, vegetation, and management. For instance, reported sequestration 70 

¹ in boreal rain-fed bogs (Villa and Bernal, 2018) to as 71 
¹ in constructed wetlands with emergent Phragmites in the Netherlands 72 

(de Klein and van der Werf, 2014). Similarly, temperate wetlands in central Ohio exhibit a wide 73 
range of carbon sequestration rates depending on vegetation: forested depressional wetlands 74 
dominated by Quercus palustris ¹, while marshes dominated by 75 
Typha ¹ (Bernal and Mitsch, 2012). In Victoria, Australia, 76 

¹ in shallow marshes to 77 
¹ in permanent open freshwater wetlands (Carnell et al., 2018). More relevant to 78 
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this study, in the San Francisco Bay-Delta region, nontidal managed wetlands dominated by 79 
-80 

¹. This estimate is based on direct calculations using Ameriflux data from sites with 81 
over a decade of observations (US-Myb, US-Tw1, and US-Tw4). For this calculation we used 82 
full-year annual averages and their corresponding standard deviation to the annual mean, to 83 
highlight the significant inter-annual variability, with the standard deviation close to the mean.  84 
The unit reported for these Delta sites is in gC-CO ¹, as the EC tower directly detects 85 
CO  exchange, which is convenient for GHG assessment purposes. It is worth noting that, at 86 
these sites, some years were a net CO2 source, due to site-specific disturbances such as 87
caterpillar infestations, drought, or when vegetation cover was fully established (Anderson et al., 88 
2018; Knox et al., 2017; Rey-Sanchez et al., 2021) . See table S1 for more detailed information 89 
and references therein.  90 

Although CO2 balance (photosynthesis minus community respiration) is an important component 91
of carbon sequestration, in many wetland systems sequestration benefits are counterbalanced 92 
by CH4 emissions, a potent greenhouse gas, with a warming potential 27 times higher than CO2 93
(Lee et al., 2023) that can often offset climate mitigation efforts. CH4 emission rates also vary 94 
substantially over time and across wetlands, from as low as 0.23 gC-CH ¹ in saltwater 95 
zones of estuarine environments (Abril and Iversen, 2002) -CH ¹ in 96 
certain freshwater wetlands (Knox et al., 2021). For example, restored freshwater wetlands in 97 

-CH ¹ (Stewart et al., 98 
2024). Tropical wetlands in Costa Rica exhibit some of the highest emissions, with isolated and 99 

-CH ¹ (Mitsch et al., 2013). The 100 
San Francisco Bay-Delta wetlands that have high carbon sequestration rates also release CH4101 

-CH ¹ (direct measurements from the eddy covariance tower data 102 
(Arias-Ortiz et al., 2021)). See table S2 for further information and reference therein. This dual 103 
role of wetlands in both sequestering carbon and emitting CH4 reveals the complex effect they 104 
have on the global greenhouse gas balance. Therefore, integrating CO2 and CH4 emissions is 105 
critical to assess the net climate benefits of wetland conservation and restoration initiatives. 106 

To evaluate how wetlands contribute to the atmospheric radiation budget at larger scales, it is 107 
essential to quantify both GHG emissions and carbon sequestration, especially at sites where 108 
direct measurements are unavailable (Moomaw et al., 2018). Upscaling models serve this 109 
purpose by allowing estimation of sequestration and emission rates across larger spatial scales 110 
than those covered by the original data sources (Villa and Bernal, 2018) which provide GHG 111 
accounting and net climate benefit assessments for specific wetland sites (Nahlik and 112 
Fennessy, 2016). Moreover, it aids in targeting wetland restoration efforts that aim to optimize 113 
sequestration by identifying locations with the greatest potential for net carbon uptake. 114 

Process-based models have traditionally been used to estimate sequestration and emissions 115 
(Mack et al., 2023; Zhang et al., 2002). Models such as DNDC (Li, 1996), DayCent (Parton et 116 
al., 1998), and Ecosys (Grant et al., 2017) have been applied to simulate biogeochemical 117 
processes in terrestrial ecosystems, including modeling CH4 emissions, carbon balances, and 118 
soil carbon and nitrogen cycling (Grant and Roulet, 2002; Weiler et al., 2018; Zhang et al., 119 
2002). While these models can elucidate the processes that play a role in carbon dynamics, 120 

https://doi.org/10.5194/egusphere-2025-361
Preprint. Discussion started: 1 April 2025
c© Author(s) 2025. CC BY 4.0 License.



4 

they require extensive mechanistic parameterization to accurately represent the interactions in 121 
various ecosystems(Pastorello et al., 2020; Yin et al., 2023). This approach often necessitates 122 
site-specific information and data collection, making implementation over vast areas challenging 123 
(Saunois et al., 2024; Xu and Trugman, 2021). The extensive data needs associated with these 124 
process-rich models showcase the need for alternative approaches that can effectively upscale 125 
wetland emissions without such intensive resource demands. 126 

Artificial Intelligence (AI) methods, such as machine learning and deep learning, have been 127 
widely applied in ecological modeling in recent years, alongside long-term, large-scale data 128 
collection efforts (Perry et al., 2022). Recent deep learning applications have demonstrated 129 
success in capturing the complex dynamics of carbon and methane fluxes in these systems 130 
(Ouyang et al., 2023; Yuan et al., 2022, 2024; Zou et al., 2024). The availability of open-source 131 
modeling platforms like TensorFlow and PyTorch has made advanced computational 132 
techniques, such as neural networks, more accessible, enabling the rapid development and 133 
deployment of a range of specialized modeling tasks (Xu et al., 2021). Despite several recent 134 
studies demonstrating the potential of machine learning for large-scale carbon cycling in 135 
wetland ecosystems, this remains a relatively young field. Moreover, carbon dynamics in 136 
wetland ecosystems are temporally variable and inherently nonlinear, making them particularly 137 
well-suited for testing machine learning approaches (Arora et al., 2019, 2022). We therefore 138 
emphasize the importance of evaluating and comparing various approaches within this domain 139 
and their potential for large-scale assessment. 140 

A pervasive challenge in model development is the ability to balance complexity with 141 
generalizability. While more complex models can capture nonlinear relationships, they also 142 
increase the risk of overfitting, where the model performs well in the testing, but poorly on new 143 
conditions (Hastie, 2009; Tashman, 2000). Furthermore, it is also important to use a robust 144 
validation framework. For the application of upscaling, it is important that the model is able to 145 
extrapolate spatially. For this purpose, a leave-one-site-out (LOSO) validation approach is 146 
typically carried out, whereby the models are trained on data that excludes a single site, with the 147 
excluded site data saved for model testing (Bodesheim et al., 2018; Tramontana et al., 2016). It 148 
is also important to avoid data leakage, where information from the training set inadvertently 149 
appears in the testing set (Kaufman et al., 2012), a risk posed when splitting temporally 150 
adjacent data points that are close in value, potentially inflating performance statistics (Bergmeir 151 
and Benítez, 2012; Kaufman et al., 2012). For example, daily rates of change relative to a 152 
system where seasonal dynamics dominate, such as emissions of CH4 emissions in vegetated 153 
wetlands (Knox et al., 2021).  154 

In this study, we introduce a model framework for coastal nontidal wetland CO2 and CH4155 
emissions using several  ‘off-the-shelf’ models. These models are trained and validated against 156 
observational data, and results are compared to find the most predictive model. The top 157 
performing model is then used to upscale carbon sequestration and CH4 emissions in nontidal 158 
wetlands at regional scale. The San Francisco Bay-Delta serves as the area of interest, due to 159 
its network of EC towers that have been operating for a relatively long time and relevance to 160 
future wetland restoration efforts. We employ a suite of models, ranging widely in complexity: (1) 161 
linear regression; (2) Random Forests (Breiman, 2001), an ensemble method that constructs 162 
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multiple decision trees to reduce overfitting; (3) gradient boosting techniques such as LightGBM 163 
(Ke et al., 2017) and XGBoost (Chen and Guestrin, 2016), which are scalable tree boosting 164 
systems able to handle complex nonlinear relationships and variable interactions; (4) Support 165 
Vector Machines (SVM) (Cortes, 1995), a kernel-based technique that can approximate 166 
nonlinear boundaries between data points and (5) the Recurrent Neural Network (RNN) such as 167 
the Long Short-Term Memory (LSTM) neural network (Hochreiter, 1997), an advanced model 168 
designed to process sequential data and capture non-linear interactions over long-term 169 
dependencies. We also test a model with similar but simpler architecture, the Gated Recurrent 170 
Unit (GRU) (Chung et al., 2014), which uses fewer parameters. Linear regressions serve as a 171 
baseline to assess the applicability of the more sophisticated methods. Random Forests have 172 
been used to upscale northern wetland methane emissions (Peltola et al., 2019), gradient 173 
boosting methods have demonstrated success in ecological modeling (Ding, 2024; Räsänen et 174 
al., 2021; Zou et al., 2024), and LSTM neural networks have been successfully applied to model 175 
CO2 and CH4 fluxes in ecosystems (Yuan et al., 2022, 2024; Zou et al., 2024). Our proposed 176 
framework is designed to provide transparency, easy determination of model practicality and 177 
applicability, and contextualisation to model performances by comparing to a baseline model 178 
(i.e. linear regression).  179 

 180 

2. Methods 181 

Our ultimate aim is to establish a robust modeling framework for estimating wetland carbon fluxes 182 
in sites that are not monitored. To achieve this, we compare a range of models, from simple linear 183 
regression to advanced recurrent machine learning neural networks. Since the goal is to predict 184 
unseen sites, we emphasize cross-site predictability by validating and testing the models at sites 185 
not included in training. Doing so ensures predictions are applicable beyond the training sites and 186 
addresses challenges often associated with model generalizability (Meyer and Pebesma, 2022). 187 
This strategy serves several purposes: 188 

1. Performance Contextualization: Starting with the simplest type of model provides a 189 
baseline for performance and helps evaluate the advantage (or lack thereof) for using more 190 
complex models.  191 

2. Practicality and Transparency: Advanced models may offer better performance but often 192 
require significant effort to set up and may lack interpretability. By comparing models of 193 
varying complexity using the same input data, we assess whether the added complexity is 194 
justified. 195 

3. Feature Evaluation: Training with different combinations of relevant features helps us to 196 
understand which features are dominating control, and the limitations of the data in terms 197 
of predictive capacity.  198 

2.1 Model targets 199 

The model targets two key variables: CO2 (FCO2) and CH4 (FCH4) surface emissions. Both 200 
variables follow a sign convention where positive values indicate emissions to the atmosphere 201 
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(source) and negative values indicate sequestration (sink). Both variables are available at half-202 
hourly resolution through the Ameriflux database.  203 

The models we developed all operate on a daily time scale, requiring target variables to be 204 
aggregated to the daily time scale. This approach assumes that sub-daily variations have a 205 
negligible non-linear contribution to longer time scales, an assumption supported by the dominant 206 
seasonal signal typically observed in flux data from these systems (Knox et al., 2021). 207 

These target variables could then be used to calculate annual NECB (Net Ecosystem Carbon 208 
Balance; ¹ -equivalent 209 
flux) gCO2 ¹).The global warming potential (GWP) of non-fossil CH4 is 27.2 as per the latest 210 
IPCC assessment(Lee et al., 2023). For this study, we neglect contributions of lateral fluxes due to 211 
data limitations, and that lateral transport at these sites is assumed to be negligible due to the 212 
limited outflow from the wetlands (Miller et al., 2008). FCO2e is defined as annually averaged CO2 213 
and CH4214
indicates that the ecosystem is contributing positively to atmospheric warming, and vice versa. 215 
Here we consider CO2 and CH4 emissions but neglect contributions from N2O due to data 216 
limitations and because N2O emissions are considered negligible in Delta wetlands (Windham-217 
Myers et al., 2018).  218 

2.2 Region of interest 219 

The Sacramento-San Joaquin Delta was selected for this study due to its high density of EC towers 220 
and extensive long-term data. We selected sites for model training and validation where data was 221 
collected for at least a decade to capture interannual variability. Hence three restored wetland 222 
sites, US-Myb (Matthes et al., 2016), US-Tw1 (Valach et al., 2016), and US-Tw4 (Eichelmann et 223 
al., 2016) are selected in this study. While data from two other sites (i.e., US-Sne and US-Tw5) 224 
are available, the lack of sufficient temporal coverage and, in the case of US-Sne, not fully 225 
established vegetation cover, makes them less representative of a stable ecosystem. Focusing 226 
on sites with over a decade of continuous data allows for capturing long-term dynamics more 227 
effectively and provides sufficient time for the wetlands to reach a stable state. The dataset 228 
encompasses 35 full site-years of observations across the three sites within the Delta (Novick et 229 
al., 2018) (Table 2, Figure 1), with detailed mapping data sourced from the Ecoatlas Database 230
(Workgroup, 2019) which provides land use and vegetation surveys across wetlands in California. 231 

Table 2: Model training sites 232 

Site Code Site Name Water Type Salinity Years of 
Data (Full) 

Start Date

US-Myb Mayberry Wetland Non-Tidal Fresh 13 2010

US-Tw1 Twitchell Wetland West Pond Non-Tidal Fresh 12 2011

US-Tw4 Twitchell Island East End 
Wetland 

Non-Tidal Fresh 10 2013

233 
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The sites are dominated by Tules (Schoenoplectus), Cattails (Typha), and invasive species such as 234
Phragmites, which are perennial emergent plants well suited to wetland environments (López et 235
al., 2016). The Delta itself is host to the largest estuarine system on the US Pacific coast, spanning 236
approximately 3,000 km2, and contains a diverse network of wetland systems. Historically, much of 237
the area was drained and converted for agriculture , but 238
recent restoration efforts have reclaimed select portions of the landscape for environmental 239
benefits. 240

241

Figure 1: Map of the Sacramento-San Joaquin Delta's wetland system. The Eddy-covariance 
tower site locations outlined in Table 2 are shown in the red and purple boxes. Satellite image: © 
Google Earth, accessed 2024.
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242

2.3 Model features243 

The application of this work focuses on upscaling carbon fluxes from similar wetlands at a regional 244 
scale. To achieve this, we aim to predict fluxes at unmonitored sites using widely available data 245 
that are expected to be key drivers of FCO2 and FCH4. Since site-level measurements from EC 246 
towers are not available at a larger spatial scale, we focus on ecosystem drivers that can be 247 
accessed across broader spatial extents. 248 

The models utilize a comprehensive set of features from two readily accessible datasets: the 249 
Western Land Data Assimilation System (WLDAS) (Erlingis et al., 2021) and satellite-derived 250 
products from MODIS (Justice et al., 2002) (Supplementary Table S3). WLDAS provides high-251
resolution hydrological and meteorological data at 1-km spatial and daily temporal resolutions, 252
spanning from 1980 to the present. Key variables include soil moisture, soil temperature, 253 
precipitation, solar radiation, and water table depth. MODIS complements these inputs with 254 
remote sensing data at a spatial resolution of 250–500 meters and temporal intervals ranging 255 
from 4 to 16 days, providing vegetation indices such as the Normalized Difference Vegetation 256 
Index (NDVI) and Leaf Area Index (LAI). The broad spatial and temporal coverage of these 257 
datasets enables upscaling across various regions. By relying on publicly available data 258 
sources, the framework remains practical and adaptable, facilitating rapid implementation with 259 
the appropriate training data.  260 

261 

2.4 Model suite 262 

To evaluate ML model performance in calculating  FCO2 and FCH4, we implemented a suite of 263 
seven models ranging from simple linear methods to more complex neural networks. These 264 
models have been used in various ecosystems to study fluxes and collectively represent a broad 265 
spectrum of methodological complexity. Table 3 summarizes the core characteristics and 266 
advantages of each approach. 267 

Table 3: An overview of the models that are applied to wetland fluxes 268 

Model Name Category Description Key Strengths 

Linear Regression Regression Fits a linear relationship 
between predictors and 
fluxes 

Simple baseline, 
easily interpretable 
(Breiman, 2001) 

Random Forest 
(Breiman, 2001)  

Ensemble of 
Decision Trees 

Aggregates multiple 
decision trees to enhance 
prediction stability 

Robust to 
nonlinearity, 
reduces overfitting 
(Cortes, 1995) 
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Support Vector 
Machine (Cortes, 
1995) (SVM) 

Kernel-Based 
Method 

Uses flexible kernels to find 
optimal separating 
hyperplanes 

Effective in high 
dimensions, 
adaptable kernels 
(Ke et al., 2017) 

LightGBM (Ke et al., 
2017)  

Gradient 
Boosting 

Employs iterative boosting 
with efficient tree growth 

Fast, memory-
efficient, handles 
large datasets 

XGBoost (Chen and 
Guestrin, 2016)  

Gradient 
Boosting 

Improves boosting with 
regularization and efficient 
computations 

Manages outliers, 
handles sparse 
data well 

LSTM Neural 
Network 
(Hochreiter, 1997)  

Recurrent 
Neural Network 

Captures temporal 
dependencies in sequential 
data inputs 

Ideal for time-
series, learns long-
term patterns 

GRU Neural Network 
(Chung et al., 2014)  

Recurrent 
Neural Network 

Similar to LSTM but 
streamlined with fewer 
parameters 

Efficient temporal 
modeling, lower 
complexity 

269 

These models act to demonstrate a spectrum of model complexity and how that can be leveraged 270 
to improve flux prediction. 271 

 272 

2.5 Validation framework 273 

To evaluate the models' ability to generalize across sites, we employed a Leave-One-Site-Out 274
(LOSO) cross-validation strategy. In LOSO, we train the models on data from all but one site, and 275 
test the models on the excluded site. This approach is repeated for each site in the dataset and 276 
then aggregated, ensuring that there are no spatio-temporal connections between the training and 277 
testing data. While few models are immune to overfitting, this approach minimizes the risk of doing 278 
so. 279 

An integral part of our modeling approach is the strategic selection of input features to optimize the 280 
model's performance. We perform this selection by first selecting features that are expected to be 281 
important, guided by mechanistic considerations of wetland processes gained from fieldwork and 282 
insights from mechanistic models (Table S3). Since the total number of possible feature 283 
combinations is too large for an exhaustive search, we adopt a feed-forward selection (FFS) 284 
strategy. This method begins with a single feature and iteratively adds features that most improves 285 
the model's performance based on a chosen statistic. At each step, we evaluate the model's 286 
performance with each potential new feature and select the one that provides the greatest 287 
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improvement. This process continues until adding additional features no longer significantly 288 
enhances the model's performance. By using this approach, we efficiently identify the most 289 
influential predictors without the computational burden of testing all possible combinations. 290 

 291 

2.6. Validation292

As suggested above, each model was trained using data from two wetland sites and then 293 
validated on the third. Although the number of sites was limited, each site offered over a decade 294 
of observations accumulated to a daily time step, ensuring exposure to a range of 295 
environmental conditions representative of the wetland type and regional climate. For each 296 
excluded site, the model’s predictions were compared against measured FCO2and FCH4. We 297 
aggregated performance metrics (R², Pearson correlation coefficient (r), and RMSE) across all 298 
site predictions. This process was paired with the FFS method optimized to maximize R2. 299 

 300 

3. Results 301 

3.1 Model Validation  302 

We tested six modeling techniques of varying complexities (Table 3). Model performance scores 303 
for daily predictions are shown in Figure 2, demonstrating that nearly all machine learning 304 
models outperformed the linear regression baseline (R² = 0.62 for FCO2 and R² = 0.54 for 305 
FCH4). For FCO2, LSTM and GRU achieved the highest R² values (0.71 and 0.70, 306 
respectively), outperforming other methods. A similar result was found for FCH4, with LSTM and 307 
GRU both scoring R² of 0.60. These results suggest that deep learning models can provide 308 
tangible benefits over linear regression methods for upscaling flux predictions. The LSTM model 309 
was selected for upscaling in this study as it scored highest consistently, though other ML 310 
models scored comparably, so we do not assert it as definitively the best model. 311 

The feature selection process had access to 26 environmental features from WLDAS and 8 312 
features from MODIS (see table S3 for full details). These variables encompass a wide range of 313 
atmospheric, soil, and vegetation characteristics, such as precipitation, temperature, soil 314 
moisture, and spectral indices, key environmental drivers known to influence carbon and 315 
methane flux dynamics (Mitsch and Gosselink, 2015b). Results revealed that model 316 
performance plateaued after including 4 features, meaning that only a small subset of predictors 317 
were needed to maximize predictive skill. Notably all ML models, regardless of complexity, 318 
selected the same initial feature for both FCO2 and FCH4, which highlights temperature as a 319 
dominant environmental driver. As shown in Table 4 for the LSTM case, temperature-related 320 
variables emerged as the first selected feature for both FCO2 (Air Temperature) and FCH4 321 
(Canopy Temperature) predictions, illustrating the importance of temperature in driving 322 
ecosystem activity. As an aside, while temperature variables may be most significant in the first 323 
step, many other features scored comparably. The subsequent inclusion of hydrological and 324 

https://doi.org/10.5194/egusphere-2025-361
Preprint. Discussion started: 1 April 2025
c© Author(s) 2025. CC BY 4.0 License.



11 

spectral reflectance variables led to modest improvements in R² values, which is also mirrored 325 
by improvements in RMSE and r.  326 

 327 

Table 4: Feed-forward feature selection process. 328 

Target 
Variable 

Step Chosen Feature R² RMSE r 

FCO2 1 Air Temperature 0.66 1.62 0.82

FCO2 2 Water Table Depth 0.68 1.57 0.83

FCO2 3 Bare Soil 
Evaporation 

0.70 1.54 0.84 

FCO2 4 Blue Reflectance 0.71 1.50 0.85

FCH4 1 Canopy 
Temperature 

0.52 0.054 0.73 

FCH4 2 Near-Infrared 
Reflectance 

0.58 0.051 0.76 

FCH4 3 Total 
Evapotranspiration 

0.60 0.050 0.77 

329 

Figure 3 shows both FCO2 and FCH4 results, including time series and scatter plots comparing 330 
predictions to observations. Overall, the predicted values track the observations reasonably 331 
well. For FCO2, predictions tended to regress toward the mean, underestimating peak 332 
emissions at local maxima and overestimating at local minima. The ML models also displayed 333 
less interannual variability than the observations, common in machine learning approaches 334 
(Ouyang et al., 2023). For wetlands, this is likely due to limited subsurface process information 335 
included in the machine learning models. Still, the scatter plot shows strong performance for 336 
FCO2 (r = 0.84, R² = 0.71, RMSE = 1.49 gC-CO  m-2 day-1), despite a noticeable spread around 337 
the 1:1 line. 338 

FCH4 predictions exhibited similar behavior, with lower interannual variability than the 339 
observations. At the US-Myb site, for example, observed FCH4 were initially high (aside from 340 
the first year, when vegetation cover had yet to be fully established) but declined over time, 341 
stabilizing at lower values. The ML models captured this shift to some extent, predicting higher 342 
fluxes early in the time series and then modulating to lower levels later on. However, predictions 343 
did not fully replicate the magnitude of the observed downward annual trend, introducing bias 344 
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into the scatter plots at higher and lower extreme values. This phenomenon is known as 345 
regression to the mean, observed in similar machine learning studies (Ouyang et al., 2023). 346 
Consequently, the FCH4 model performance was weaker than the FCO2 model (R² = 0.61, r = 347 
0.78, RMSE = 0.05 g C-CH4 m-2 day-1), indicating that the processes controlling FCH4 in 348 
younger wetlands like US-Myb may require more detailed subsurface information (such as soil 349 
organic C, oxygen, or redox information) to be accurately modeled. 350 

The annual bar plots presented in Figure 4 highlight the model’s difficulty in capturing the 351 
interannual variability of carbon fluxes across the study sites. While the average FCO2 and 352 
FCH4 predictions are generally aligned with observed average values with small overall mean 353 
bias, the model struggles to reproduce the observed year-to-year variability. Although direct 354 
subsurface measurements are available at certain sites, at the regional scale their limited spatial 355 
and temporal coverage currently limits integration into models designed for regional upscaling 356 
over inter-annual timescale. For example, while spatial maps of wetland soil organic carbon 357 
exist (Uhran et al., 2022), using only three sites for training purposes would provide just three 358 
corresponding data points, limiting model training. The LOSO validation approach revealed that 359 
deep learning models, particularly LSTM and GRU, consistently outperformed traditional linear 360 
regression and other machine learning methods for both FCO2 and FCH4 predictions. While 361 
nonlinear models demonstrated clear advantages, the magnitude of improvement was relatively 362 
modest, reflecting the inherent challenges of capturing site-specific inter-annual dynamics of 363 
wetland emissions. To improve model performance, additional techniques such as feature 364 
transformations or attention mechanisms could be implemented. However, the primary goal of 365 
this model suite is to ensure reproducible results with ‘off-the-shelf’ models, which serves as a 366 
foundation for more advanced, nuanced approaches. 367 

 368 
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Figure 2: Bar plot outline model performance based on R2 score
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Figure 3: Time-series plots (left) of observed (blue) and predicted (green) FCO2 and FCH4 
fluxes for US-Myb, US-Tw1, and US-Tw4. The scatter plot (right) compares observed vs. 
predicted values across all sites, with a 1:1 reference line (red dashed) and overall 
performance metrics (RMSE, r, R²) displayed in the upper-left corner.
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Figure 4: Annual Observed and Predicted FCO2 and FCH4 Across Three 
Wetland Sites. Aggregated statistics for all sites are as follows: For FCO2, the 
Mean Absolute Error (MAE) is 193 gC m-² yr-1 and the Mean Bias Error (MBE) 
is -10 gC m-² yr-1 . For FCH4, MAE is 11 gC-CH m-² yr-1 and the MBE is -2 
36gC-CH m-² yr-1 .
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 378 

 379 

3.2. Model Application: Upscaling 380 

After selecting LSTM as the model of choice, it was retrained using all available data from the 381 
three sites for upscaling.. The Sacramento-San Joaquin Delta contains roughly 700km2 of 382 
wetland area, including tidal and nontidal regions. The upscaling domain encompasses 383 
approximately 25 km² of nontidal wetlands in the region, dominated by vegetation types relevant 384 
to the training sites, specifically Tules, Cattails, and Phragmites. The assumption is that the 385 
training sites used in this study are representative of the broader conditions in the Delta, but we 386 
acknowledge that local variability in carbon dynamics, such as those caused by microclimates 387 
prevalent in the area, may not be fully captured during the ML model training. Improvements to 388 
the model might be achieved if additional site data covering a wider range of environmental 389 
conditions were incorporated. The feature data used to optimize the model were spatially 390 
interpolated onto the regional model grid and the model applied to yield flux estimations. 391 
Although relatively modest in spatial extent, these wetlands are of particular interest given their 392 
role in carbon sequestration and potential climate mitigation and as targets for conservation and 393 
restoration. 394 

Figure 5 displays spatial maps of annual flux estimates of Net Ecosystem Carbon Balance 395 
(NECB), methane flux (FCH4), and the CO  equivalent flux rate (FCO2e) in the study domain . 396 
The results show that carbon sequestration, indicated by negative NECB (green) values, are 397 
notably stronger in the more northern parts of the domain, which is likely driven by air 398 
temperature (dominant feature), with this region of California being subject to distinctive 399 
microclimates. In contrast, FCH4 shows a comparatively uniform spatial pattern, which was also 400 
observed in the model validation. Similar to NECB, the FCO2e distribution shows strong 401 
latitudinal dependence, with a net CO2e sink in northern zones and a tendency toward 402 
emissions in the southern portion of the study area, though localized heterogeneity exists. 403 

Figure 6 shows averaged fluxes in the upscaling domain over the full study period. The results 404 
highlight the Delta as an overall carbon sink, with NECB averaging approximately -380 gC m ² 405 
yr ¹, indicating persistent sequestration across multiple years. CH4 fluxes average 28 gC-CH  406 
m ² yr ¹, and shows little spatial variability. Values are consistent with those previously reported 407 
in the region (Arias-Ortiz et al., 2021). Integrating these fluxes into a CO -equivalent metric, this 408 
regional wetland system remains a net sink of CO2 e, with approximately 400 gCO e m ² yr ¹ 409 
sequestered on average in the upscaling domain.  410 
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Figure 5: Spatial maps of the average annual fluxes across the Delta region. NECB (left) 
displays carbon sequestration. FCH4 (center) highlights CH4 emissions. FCO2e (right) 
integrates CO and CH fluxes weighted by radiative forcing.  Green indicates net sinks and 
red indicates net emissions to the atmosphere.
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411

412

413

414

Figure 6: Bar plots and box plots of annual NECB, FCH4, and FCO2e fluxes, which have 
been spatially integrated over the study region, a total of 25 km2 total land area vegetated 
primarily by Tules, but also Cattails and Phragmites. The left column shows annual fluxes 
for each year, with negative fluxes in green and positive fluxes in red. Daily fluxes, 
aggregated to annual totals, are overlaid as black lines. The right column shows box plots 
summarizing the distribution of annual fluxes, highlighting the range, median (blue line), and 
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spread of values. Each row represents a different flux variable: (a) NECB, (b) FCH4, and (c) 
FCO2e.

415 

416 

417 

4. Discussion 418 

This study demonstrates the development and evaluation of a data-driven framework to upscale 419 
terrestrial CO  and CH  flux estimates for non-tidal wetlands in the Sacramento-San Joaquin 420 
Delta. By systematically comparing models of varying complexity, including linear regression, 421 
ensemble methods, gradient boosting algorithms, and recurrent neural networks (RNNs), we 422
presented a transparent assessment of model performance. The goals were to identify the 423 
model that best predicts CO  and CH  fluxes and critically appraise whether incremental 424 
complexity is justified by improvements in predictive capacity. Relevant cited works have 425 
included many different machine learning approaches for predicting emissions. This work aims 426 
to unify modelling efforts by establishing a standard framework for developing robust data-427 
driven models, particularly for upscaling purposes.  428 

Our results indicate that non-linear and more advanced models generally outperformed simple 429 
linear regression approaches. Among all tested models, the Long Short-Term Memory (LSTM) 430 
and Gated Recurrent Unit (GRU) neural networks provided the highest overall skill in predicting 431 
both CO  and CH  fluxes at daily timescales. This improvement was marginal but consistent, 432 
supporting the notion that time-series models, which inherently capture temporal dependencies 433 
and non-linearities, can provide tangible benefits over linear methods and traditional machine 434 
learning algorithms. 435 

However, while these deep learning models performed best, the performance gains were not as 436 
large as might be expected given their significantly higher complexity and computational 437 
demands. Similar outcomes have been noted in other ecological modeling applications, where 438 
advanced machine learning methods yield improvements that are statistically significant yet  439 
modest in terms of performance gains relative to linear models (Oh et al., 2022; Wood, 2022).  440 

The deep learning models provided reasonable estimates of daily fluxes but struggled to 441 
replicate the full range of interannual variability observed in the field measurements, which is a 442 
common issue for data-driven models in this field (Nelson et al., 2024). This limited ability to 443 
capture long-term trends and extremes mirrors common challenges in machine learning-based 444 
modeling, where the absence of explicit mechanistic understanding limits extrapolation beyond 445 
the conditions represented in the training data. The difficulty in reproducing interannual 446 
fluctuations was particularly evident for CH  fluxes, an outcome consistent with the high spatial 447 
and temporal complexity of CH  cycling in wetland environments and the limited availability of 448 
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subsurface parameters (e.g., oxygen concentration, redox conditions, substrate availability) that 449 
drive CH  production. This may not be surprising as the number of annual cycles available in 450 
the training set was only 35 years. 451 

The observed regression to the mean and the reduced dynamic range in model predictions may 452 
reflect insufficient representation of key environmental drivers in the feature set or inadequate 453 
temporal coverage and variability in the training data. While publicly available datasets such as 454 
WLDAS and MODIS were effective at providing spatially and temporally comprehensive inputs, 455 
the lack of direct subsurface and soil biogeochemical measurements likely limited the model’s 456 
ability to capture critical internal processes that are likely causing the observed differences 457 
between years. Although the feed-forward selection process for the model features had access 458 
to an extensive pool of relevant features, results indicated that only a small subset of features 459 
was necessary to maximise performance. This suggests that, while there are many features that 460 
control CO2 and methane, their contribution to predictive accuracy may be redundant or 461 
captured indirectly by other variables. The exclusion of particular features, such as the water 462 
table depth for FCH4, illustrates the trade-off between mechanistic intuition and data-driven 463 
optimization. Strong correlations between features and limited independent variability can lead 464 
to features being left out that would typically be considered ecologically relevant. 465 

After applying the chosen model (LSTM) to calculate CO2 and CH4 fluxes, we estimated NECB 466 
and CO -equivalent fluxes for similar wetland settings across the Delta region. The results show 467 
spatial heterogeneity and pinpoint regions that act as stronger net carbon sinks, as well as 468 
areas where CH  emissions may offset climate benefits of net carbon sequestration. Such 469 
insights support targeted conservation and restoration strategies aimed at maximizing net 470 
carbon sequestration benefits, facilitating ongoing efforts to restore and manage wetlands to 471 
contribute to net-zero emission goals. 472 

A key advantage of the chosen approach is its reliance on readily available, open-source data 473 
streams and standard computational resources. The framework can be deployed efficiently 474 
without specialized hardware, making it accessible to resource-limited organizations, 475 
practitioners, and researchers. 476 

The primary objectives of this study were to identify a suitable model, contextualize model 477 
performance by comparing to a baseline linear regression, and highlight trade-offs between 478 
complexity, interpretability, and accuracy. By explicitly testing multiple models ranging from 479 
simple linear regressions to advanced recurrent neural networks, we demonstrated that 480 
complexity alone does not guarantee a substantial increase in predictive power. Instead, 481 
complexity should be adopted judiciously, based on the magnitude of performance gains, the 482 
cost of model implementation, and the level of interpretability. 483 

We suggest that future modeling efforts should focus on deriving mechanistically relevant 484 
predictors (Ouyang et al., 2023), and incorporating hybrid modeling approaches (Yao et al., 485 
2023) that combine the strengths of process-based and machine learning methods. Attention 486 
mechanisms (Yuan et al., 2022), advanced architectures (e.g., Transformers (Vaswani, 2017)), 487 
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or physics-informed machine learning (Raissi et al., 2019) may also help address model 488 
performance limitations. 489 

 490 

5. Conclusions491

 492 
This study provides a transparent, methodical demonstration of an artificial intelligence 493 
approach to modeling wetland carbon dioxide (CO ) and methane (CH ) emissions, using a 494 
suite of “off-the-shelf” tools and establishing a standardized benchmarking protocol for model 495 
performance evaluation. In the study region (the Sacramento–San Joaquin Delta), inter-model 496 
comparisons revealed modest but appreciable performance differences when comparing 497 
advanced models with a linear regression baseline. While there are tangible benefits to 498 
employing machine learning for these purposes, it is likely that the gap between simpler models 499 
and more sophisticated models will widen as data quantity and quality continues to increase. 500 
Ultimately, this study lays the groundwork for regional scale model benchmark testing, 501 
facilitating the development of more advanced modeling approaches that can guide wetland 502 
management, restoration planning, and climate mitigation strategies. 503 
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