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17  Abstract

18  Wetlands play a pivotal role in carbon sequestration but emit methane (CH.), creating

19  uncertainty in their net climate impact. Although process-based models offer mechanistic

20 insights into wetland dynamics, they are computationally expensive, uncertain, and difficult to
21 upscale. In contrast, data-driven models provide a scalable alternative by leveraging extensive
22  datasets to identify patterns and relationships, making them more adaptable for large-scale

23  applications. However, their performance can vary significantly depending on the quality and
24  representativeness of the data, as well as the model design, which raises questions about their
25 reliability and generalizability in complex wetland systems. To address these issues, we present
26  a data-driven framework for upscaling wetland CO. and CH4 emissions, across a range of

27  machine learning models that vary in complexity, validated against an extensive observational
28 dataset from the Sacramento-San Joaquin Delta. We show that artificial intelligence (Al)

29  approaches, including Random Forests, gradient boosting methods (XGBoost, LightGBM),

30  Support Vector Machines (SVM) and Recurrent Neural Networks (GRU, LSTM), outperform

31 linear regression models, with RNNs standing out, achieving an R? of 0.72 for daily CO, flux
32  predictions compared to 0.62 for linear regression, and an R? of 0.60 for CH, flux predictions
33  compared to 0.54 for linear regression. Interestingly, linear regression performed better than
34  random forest for methane flux, which highlights the necessity for comparison. Despite that,

35 interannual variability is less well captured, with annual mean absolute error of 193 gC m2 yr
36  for CO,; fluxes and 11 gC-CH, m2 yr' for CH, fluxes. By integrating vertically-resolved

37  atmospheric, subsurface, and spectral reflectance information from readily available sources,
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38 the model identifies key drivers of wetland CO, and CH4 emissions and enables regional

39  upscaling. These findings demonstrate the potential of Al methods for upscaling, providing
40 practical tools for wetland management and restoration planning to support climate mitigation
41  efforts.

42
43 1. Introduction

44  Wetlands provide a wide array of ecological, economic, and environmental benefits (Costanza
45 etal, 2014). They play a crucial role in biodiversity conservation, water purification, flood

46  control, and climate regulation (Grande et al., 2023; Sharma and Singh, 2021). Significant

47  attention has been recently given to wetland restoration due to their ability to sequester carbon
48 from the atmosphere (Lolu et al., 2020; Upadhyay et al., 2020). These ecosystems are highly
49  effective at storing carbon in their soils because the anaerobic conditions in waterlogged soils
50 suppress organic matter decomposition, allowing carbon to accumulate over time (Mitsch and
51  Gosselink, 2015a). However, wetlands can also be significant sources of CH4, a potent

52  greenhouse gas (Brix et al., 2001), leading to potentially net positive effects of wetlands on

53 climate warming. The most accurate way to determine the carbon balance in natural

54  ecosystems is through direct and continuous measurements of carbon and GHG sources and
55  sinks (Baldocchi et al., 2001). This involves monitoring carbon dynamics using techniques such
56 as eddy covariance (EC) towers (Aubinet et al., 2012), soil carbon stock assessments (Harrison
57 etal, 2011), and lateral carbon transport measurements (Ciais et al., 2008). However, these
58 measurements are time-consuming to carry out, costly, and require specialized instruments and
59  expertise, limiting their application to a few representative sites globally (Hill et al., 2017; Kumar
60 etal., 2017). The Ameriflux network offers roughly 500 EC sites comprising about 3600 site

61  years of data, monitoring carbon fluxes across various ecosystems such as forests, grasslands,
62 and wetlands (Pastorello et al., 2020). Eddy-covariance site footprints range in scale and are
63 typically determined by the sensor height and atmospheric turbulence (Chu et al., 2021). Data
64  from these Ameriflux sites could potentially be upscaled and used for estimating fluxes from

65 non-monitored sites to obtain regional assessments of carbon balance for various ecosystem
66  types, including wetlands.

67 In this study, we focus on nontidal wetlands due to the presence of a cluster of EC towers in a
68  small region located in the Sacramento-San Joaquin Delta, including three sites, each with over
69 a decade of continuous data. Reported sequestration rates in wetlands vary widely, influenced
70 by factors such as climate, vegetation, and management. For instance, reported sequestration
71  rates range from as low as 26 gC m=2yr" in boreal rain-fed bogs (Villa and Bernal, 2018) to as
72 high as 797 gC m=2yr~" in constructed wetlands with emergent Phragmites in the Netherlands
73  (de Klein and van der Werf, 2014). Similarly, temperate wetlands in central Ohio exhibit a wide
74  range of carbon sequestration rates depending on vegetation: forested depressional wetlands
75 dominated by Quercus palustris sequester up to 473 gC m=2yr—, while marshes dominated by
76  Typha sequester around 210 gC m~2yr' (Bernal and Mitsch, 2012). In Victoria, Australia,

77  freshwater marshes show varying sequestration rates from 91 gC m=2yr~" in shallow marshes to
78  230gC m=2yrin permanent open freshwater wetlands (Carnell et al., 2018). More relevant to
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79  this study, in the San Francisco Bay-Delta region, nontidal managed wetlands dominated by
80  Schoenoplectus and Typha species sequester carbon at rates of approximately 355 + 249 gC-
81 CO2m=2yr. This estimate is based on direct calculations using Ameriflux data from sites with
82  over a decade of observations (US-Myb, US-Tw1, and US-Tw4). For this calculation we used
83  full-year annual averages and their corresponding standard deviation to the annual mean, to
84  highlight the significant inter-annual variability, with the standard deviation close to the mean.
85  The unit reported for these Delta sites is in gC-CO, m™2yr™, as the EC tower directly detects
86  CO, exchange, which is convenient for GHG assessment purposes. It is worth noting that, at
87 these sites, some years were a net CO2 source, due to site-specific disturbances such as

88 caterpillar infestations, drought, or when vegetation cover was fully established (Anderson et al.,
89  2018; Knox et al., 2017; Rey-Sanchez et al., 2021) . See table S1 for more detailed information
90 and references therein.

91  Although CO: balance (photosynthesis minus community respiration) is an important component
92  of carbon sequestration, in many wetland systems sequestration benefits are counterbalanced
93 by CH4 emissions, a potent greenhouse gas, with a warming potential 27 times higher than CO-
94  (Lee et al., 2023) that can often offset climate mitigation efforts. CHs emission rates also vary
95  substantially over time and across wetlands, from as low as 0.23 gC-CH, m=2yr~' in saltwater
96  zones of estuarine environments (Abril and Iversen, 2002) to as high as 270 gC-CH, m=2yrin
97  certain freshwater wetlands (Knox et al., 2021). For example, restored freshwater wetlands in
98 Maryland dominated by grasses and sedges emit around 142 gC-CH, m=2yr—' (Stewart et al.,
99  2024). Tropical wetlands in Costa Rica exhibit some of the highest emissions, with isolated and
100 floodplain wetlands releasing between 220 and 263 gC-CH, m=2yr—* (Mitsch et al., 2013). The
101 San Francisco Bay-Delta wetlands that have high carbon sequestration rates also release CH4
102  atrates of 35+ 13 gC-CH, m=2yr (direct measurements from the eddy covariance tower data
103  (Arias-Ortiz et al., 2021)). See table S2 for further information and reference therein. This dual
104  role of wetlands in both sequestering carbon and emitting CH4 reveals the complex effect they
105 have on the global greenhouse gas balance. Therefore, integrating CO,and CH4 emissions is
106  critical to assess the net climate benefits of wetland conservation and restoration initiatives.

107  To evaluate how wetlands contribute to the atmospheric radiation budget at larger scales, it is
108 essential to quantify both GHG emissions and carbon sequestration, especially at sites where
109  direct measurements are unavailable (Moomaw et al., 2018). Upscaling models serve this

110  purpose by allowing estimation of sequestration and emission rates across larger spatial scales
111 than those covered by the original data sources (Villa and Bernal, 2018) which provide GHG
112  accounting and net climate benefit assessments for specific wetland sites (Nahlik and

113  Fennessy, 2016). Moreover, it aids in targeting wetland restoration efforts that aim to optimize
114  sequestration by identifying locations with the greatest potential for net carbon uptake.

115  Process-based models have traditionally been used to estimate sequestration and emissions
116  (Mack et al., 2023; Zhang et al., 2002). Models such as DNDC (Li, 1996), DayCent (Parton et
117 al., 1998), and Ecosys (Grant et al., 2017) have been applied to simulate biogeochemical

118  processes in terrestrial ecosystems, including modeling CH4 emissions, carbon balances, and
119  soil carbon and nitrogen cycling (Grant and Roulet, 2002; Weiler et al., 2018; Zhang et al.,
120  2002). While these models can elucidate the processes that play a role in carbon dynamics,
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121  they require extensive mechanistic parameterization to accurately represent the interactions in
122  various ecosystems(Pastorello et al., 2020; Yin et al., 2023). This approach often necessitates
123  site-specific information and data collection, making implementation over vast areas challenging
124 (Saunois et al., 2024; Xu and Trugman, 2021). The extensive data needs associated with these
125  process-rich models showcase the need for alternative approaches that can effectively upscale
126  wetland emissions without such intensive resource demands.

127  Artificial Intelligence (Al) methods, such as machine learning and deep learning, have been
128  widely applied in ecological modeling in recent years, alongside long-term, large-scale data
129  collection efforts (Perry et al., 2022). Recent deep learning applications have demonstrated
130  success in capturing the complex dynamics of carbon and methane fluxes in these systems
131 (Ouyang et al., 2023; Yuan et al., 2022, 2024; Zou et al., 2024). The availability of open-source
132  modeling platforms like TensorFlow and PyTorch has made advanced computational

133  techniques, such as neural networks, more accessible, enabling the rapid development and
134  deployment of a range of specialized modeling tasks (Xu et al., 2021). Despite several recent
135 studies demonstrating the potential of machine learning for large-scale carbon cycling in

136  wetland ecosystems, this remains a relatively young field. Moreover, carbon dynamics in

137  wetland ecosystems are temporally variable and inherently nonlinear, making them particularly
138  well-suited for testing machine learning approaches (Arora et al., 2019, 2022). We therefore
139  emphasize the importance of evaluating and comparing various approaches within this domain
140  and their potential for large-scale assessment.

141 A pervasive challenge in model development is the ability to balance complexity with

142  generalizability. While more complex models can capture nonlinear relationships, they also

143  increase the risk of overfitting, where the model performs well in the testing, but poorly on new
144 conditions (Hastie, 2009; Tashman, 2000). Furthermore, it is also important to use a robust

145  validation framework. For the application of upscaling, it is important that the model is able to
146  extrapolate spatially. For this purpose, a leave-one-site-out (LOSO) validation approach is

147  typically carried out, whereby the models are trained on data that excludes a single site, with the
148  excluded site data saved for model testing (Bodesheim et al., 2018; Tramontana et al., 2016). It
149 s also important to avoid data leakage, where information from the training set inadvertently
150 appears in the testing set (Kaufman et al., 2012), a risk posed when splitting temporally

151  adjacent data points that are close in value, potentially inflating performance statistics (Bergmeir
152  and Benitez, 2012; Kaufman et al., 2012). For example, daily rates of change relative to a

153  system where seasonal dynamics dominate, such as emissions of CH, emissions in vegetated
154  wetlands (Knox et al., 2021).

155 In this study, we introduce a model framework for coastal nontidal wetland CO.and CH4

156  emissions using several ‘off-the-shelf models. These models are trained and validated against
157  observational data, and results are compared to find the most predictive model. The top

158  performing model is then used to upscale carbon sequestration and CH4 emissions in nontidal
159  wetlands at regional scale. The San Francisco Bay-Delta serves as the area of interest, due to
160 its network of EC towers that have been operating for a relatively long time and relevance to

161  future wetland restoration efforts. We employ a suite of models, ranging widely in complexity: (1)
162 linear regression; (2) Random Forests (Breiman, 2001), an ensemble method that constructs
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163  multiple decision trees to reduce overfitting; (3) gradient boosting techniques such as LightGBM
164 (Ke et al., 2017) and XGBoost (Chen and Guestrin, 2016), which are scalable tree boosting

165 systems able to handle complex nonlinear relationships and variable interactions; (4) Support
166  Vector Machines (SVM) (Cortes, 1995), a kernel-based technique that can approximate

167  nonlinear boundaries between data points and (5) the Recurrent Neural Network (RNN) such as
168  the Long Short-Term Memory (LSTM) neural network (Hochreiter, 1997), an advanced model
169  designed to process sequential data and capture non-linear interactions over long-term

170  dependencies. We also test a model with similar but simpler architecture, the Gated Recurrent
171 Unit (GRU) (Chung et al., 2014), which uses fewer parameters. Linear regressions serve as a
172  baseline to assess the applicability of the more sophisticated methods. Random Forests have
173  been used to upscale northern wetland methane emissions (Peltola et al., 2019), gradient

174  boosting methods have demonstrated success in ecological modeling (Ding, 2024; Rasanen et
175  al., 2021; Zou et al., 2024), and LSTM neural networks have been successfully applied to model
176  CO2 and CHs fluxes in ecosystems (Yuan et al., 2022, 2024; Zou et al., 2024). Our proposed
177  framework is designed to provide transparency, easy determination of model practicality and
178  applicability, and contextualisation to model performances by comparing to a baseline model
179  (i.e. linear regression).

180

181 2. Methods

182 Our ultimate aim is to establish a robust modeling framework for estimating wetland carbon fluxes
183  insites that are not monitored. To achieve this, we compare a range of models, from simple linear
184 regression to advanced recurrent machine learning neural networks. Since the goal is to predict
185 unseen sites, we emphasize cross-site predictability by validating and testing the models at sites
186 not included in training. Doing so ensures predictions are applicable beyond the training sites and
187 addresses challenges often associated with model generalizability (Meyer and Pebesma, 2022).
188  This strategy serves several purposes:

189 1. Performance Contextualization: Starting with the simplest type of model provides a

190 baseline for performance and helps evaluate the advantage (or lack thereof) for using more
191 complex models.

192 2. Practicality and Transparency: Advanced models may offer better performance but often
193 require significant effort to set up and may lack interpretability. By comparing models of
194 varying complexity using the same input data, we assess whether the added complexity is
195 justified.

196 3. Feature Evaluation: Training with different combinations of relevant features helps us to
197 understand which features are dominating control, and the limitations of the data in terms
198 of predictive capacity.

199 2.1 Model targets

200 The model targets two key variables: CO, (FCO2) and CH4 (FCH4) surface emissions. Both
201  variables follow a sign convention where positive values indicate emissions to the atmosphere
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202  (source) and negative values indicate sequestration (sink). Both variables are available at half-
203  hourly resolution through the Ameriflux database.

204 The models we developed all operate on a daily time scale, requiring target variables to be

205 aggregated to the daily time scale. This approach assumes that sub-daily variations have a

206 negligible non-linear contribution to longer time scales, an assumption supported by the dominant
207 seasonal signal typically observed in flux data from these systems (Knox et al., 2021).

208 These target variables could then be used to calculate annual NECB (Net Ecosystem Carbon

209 Balance; gC m=2yr')and annual wetland net atmospheric radiative effect (FCO,e (CO,-equivalent
210  flux) gCO2e m2yr').The global warming potential (GWP) of non-fossil CH.is 27.2 as per the latest
211 IPCC assessment(Lee et al., 2023). For this study, we neglect contributions of lateral fluxes due to
212  data limitations, and that lateral transport at these sites is assumed to be negligible due to the

213  limited outflow from the wetlands (Miller et al., 2008). FCO2e is defined as annually averaged CO,
214 and CH, emissions, adjusted for the global warming potential (GWP) of each gas. A positive FCO,e
215 indicates that the ecosystem is contributing positively to atmospheric warming, and vice versa.
216 Here we consider CO,and CH,emissions but neglect contributions from N.O due to data

217  limitations and because N,O emissions are considered negligible in Delta wetlands (Windham-
218 Myers et al., 2018).

219 2.2 Region of interest

220  The Sacramento-San Joaquin Delta was selected for this study due to its high density of EC towers
221 and extensive long-term data. We selected sites for model training and validation where data was
222  collected for at least a decade to capture interannual variability. Hence three restored wetland
223  sites, US-Myb (Matthes et al., 2016), US-Tw1 (Valach et al., 2016), and US-Tw4 (Eichelmann et
224  al.,, 2016) are selected in this study. While data from two other sites (i.e., US-Sne and US-Tw5)
225  are available, the lack of sufficient temporal coverage and, in the case of US-Sne, not fully

226  established vegetation cover, makes them less representative of a stable ecosystem. Focusing
227  on sites with over a decade of continuous data allows for capturing long-term dynamics more
228  effectively and provides sufficient time for the wetlands to reach a stable state. The dataset

229  encompasses 35 full site-years of observations across the three sites within the Delta (Novick et
230 al.,, 2018) (Table 2, Figure 1), with detailed mapping data sourced from the Ecoatlas Database
231 (Workgroup, 2019) which provides land use and vegetation surveys across wetlands in California.

232  Table 2: Model training sites

Site Code | Site Name Water Type | Salinity | Years of Start Date
Data (Full)
US-Myb Mayberry Wetland Non-Tidal Fresh 13 2010
US-Tw1 Twitchell Wetland West Pond Non-Tidal Fresh 12 2011
US-Tw4 Twitchell Island East End Non-Tidal Fresh 10 2013
Wetland

233
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234  The sites are dominated by Tules (Schoenoplectus), Cattails (Typha), and invasive species such as
235  Phragmites, which are perennial emergent plants well suited to wetland environments (Lépez et
236  al. 2016). The Delta itself is host to the largest estuarine system on the US Pacific coast, spanning
237  approximately 3,000 km?, and contains a diverse network of wetland systems. Historically, much of
238  the area was drained and converted for agriculture (La¢an and Resh, 2016; Lund et al., 2010), but
239 recent restoration efforts have reclaimed select portions of the landscape for environmental

240  benefits.

241

N Tidal Natural: 218.95 km?
Tidal Unnatural: 74.15 km?

Bl Nontidal Natural: 94,19 km?

Nontidal Unnatural: 300.79 km?

Figure 1: Map of the Sacramento-San Joaquin Delta's wetland system. The Eddy-covariance
tower site locations outlined in Table 2 are shown in the red and purple boxes. Satellite image: ©
Google Earth, accessed 2024.
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242

243 2.3 Model features

244 The application of this work focuses on upscaling carbon fluxes from similar wetlands at a regional
245  scale. To achieve this, we aim to predict fluxes at unmonitored sites using widely available data
246  thatare expected to be key drivers of FCO2 and FCHA4. Since site-level measurements from EC
247  towers are not available at a larger spatial scale, we focus on ecosystem drivers that can be

248  accessed across broader spatial extents.

249  The models utilize a comprehensive set of features from two readily accessible datasets: the
250 Western Land Data Assimilation System (WLDAS) (Erlingis et al., 2021) and satellite-derived
251  products from MODIS (Justice et al., 2002) (Supplementary Table S3). WLDAS provides high-
252  resolution hydrological and meteorological data at 1-km spatial and daily temporal resolutions,
253  spanning from 1980 to the present. Key variables include soil moisture, soil temperature,

254  precipitation, solar radiation, and water table depth. MODIS complements these inputs with
255  remote sensing data at a spatial resolution of 250-500 meters and temporal intervals ranging
256  from 4 to 16 days, providing vegetation indices such as the Normalized Difference Vegetation
257  Index (NDVI) and Leaf Area Index (LAI). The broad spatial and temporal coverage of these
258 datasets enables upscaling across various regions. By relying on publicly available data

259  sources, the framework remains practical and adaptable, facilitating rapid implementation with
260 the appropriate training data.

261

262 2.4 Model suite

263  To evaluate ML model performance in calculating FCO2 and FCH4, we implemented a suite of
264 seven models ranging from simple linear methods to more complex neural networks. These

265 models have been used in various ecosystems to study fluxes and collectively represent a broad
266 spectrum of methodological complexity. Table 3 summarizes the core characteristics and

267  advantages of each approach.

268 Table 3: An overview of the models that are applied to wetland fluxes

Model Name Category Description Key Strengths
Linear Regression Regression Fits a linear relationship Simple baseline,
between predictors and easily interpretable
fluxes (Breiman, 2001)
Random Forest Ensemble of Aggregates multiple Robust to
(Breiman, 2001) Decision Trees decision trees to enhance nonlinearity,
prediction stability reduces overfitting
(Cortes, 1995)
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269

270
271

272

273

274
275
276
277
278
279

280
281
282
283
284
285
286
287

EGUsphere\

Network
(Hochreiter, 1997)

Neural Network

dependencies in sequential
data inputs

Support Vector Kernel-Based Uses flexible kernels to find | Effective in high
Machine (Cortes, Method optimal separating dimensions,
1995) (SVM) hyperplanes adaptable kernels
(Ke etal., 2017)
LightGBM (Ke et al., | Gradient Employs iterative boosting Fast, memory-
2017) Boosting with efficient tree growth efficient, handles
large datasets
XGBoost (Chenand | Gradient Improves boosting with Manages outliers,
Guestrin, 2016) Boosting regularization and efficient handles sparse
computations data well
LSTM Neural Recurrent Captures temporal Ideal for time-

series, learns long-
term patterns

GRU Neural Network
(Chung et al., 2014)

Recurrent
Neural Network

Similar to LSTM but
streamlined with fewer
parameters

Efficient temporal
modeling, lower
complexity

These models act to demonstrate a spectrum of model complexity and how that can be leveraged

to improve flux prediction.

2.5 Validation framework

To evaluate the models' ability to generalize across sites, we employed a Leave-One-Site-Out
(LOSO) cross-validation strategy. In LOSO, we train the models on data from all but one site, and
test the models on the excluded site. This approach is repeated for each site in the dataset and
then aggregated, ensuring that there are no spatio-temporal connections between the training and
testing data. While few models are immune to overfitting, this approach minimizes the risk of doing
so.

An integral part of our modeling approach is the strategic selection of input features to optimize the
model's performance. We perform this selection by first selecting features that are expected to be
important, guided by mechanistic considerations of wetland processes gained from fieldwork and
insights from mechanistic models (Table S3). Since the total number of possible feature
combinations is too large for an exhaustive search, we adopt a feed-forward selection (FFS)
strategy. This method begins with a single feature and iteratively adds features that most improves
the model's performance based on a chosen statistic. At each step, we evaluate the model's
performance with each potential new feature and select the one that provides the greatest
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288 improvement. This process continues until adding additional features no longer significantly
289  enhances the model's performance. By using this approach, we efficiently identify the most
290 influential predictors without the computational burden of testing all possible combinations.

291

292 2.6. Validation

293  As suggested above, each model was trained using data from two wetland sites and then

294  validated on the third. Although the number of sites was limited, each site offered over a decade
295  of observations accumulated to a daily time step, ensuring exposure to a range of

296  environmental conditions representative of the wetland type and regional climate. For each

297  excluded site, the model’s predictions were compared against measured FCO2and FCH4. We
298  aggregated performance metrics (R?, Pearson correlation coefficient (r), and RMSE) across all
299  site predictions. This process was paired with the FFS method optimized to maximize R2.

300
301 3. Results

302 3.1 Model Validation

303 We tested six modeling techniques of varying complexities (Table 3). Model performance scores
304  for daily predictions are shown in Figure 2, demonstrating that nearly all machine learning

305 models outperformed the linear regression baseline (R? = 0.62 for FCO2 and R? = 0.54 for

306 FCH4). For FCO2, LSTM and GRU achieved the highest R? values (0.71 and 0.70,

307 respectively), outperforming other methods. A similar result was found for FCH4, with LSTM and
308 GRU both scoring R? of 0.60. These results suggest that deep learning models can provide

309 tangible benefits over linear regression methods for upscaling flux predictions. The LSTM model
310  was selected for upscaling in this study as it scored highest consistently, though other ML

311 models scored comparably, so we do not assert it as definitively the best model.

312  The feature selection process had access to 26 environmental features from WLDAS and 8

313  features from MODIS (see table S3 for full details). These variables encompass a wide range of
314  atmospheric, soil, and vegetation characteristics, such as precipitation, temperature, soil

315  moisture, and spectral indices, key environmental drivers known to influence carbon and

316  methane flux dynamics (Mitsch and Gosselink, 2015b). Results revealed that model

317  performance plateaued after including 4 features, meaning that only a small subset of predictors
318  were needed to maximize predictive skill. Notably all ML models, regardless of complexity,

319  selected the same initial feature for both FCO2 and FCH4, which highlights temperature as a
320 dominant environmental driver. As shown in Table 4 for the LSTM case, temperature-related
321  variables emerged as the first selected feature for both FCO2 (Air Temperature) and FCH4

322  (Canopy Temperature) predictions, illustrating the importance of temperature in driving

323  ecosystem activity. As an aside, while temperature variables may be most significant in the first
324  step, many other features scored comparably. The subsequent inclusion of hydrological and

10
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325  spectral reflectance variables led to modest improvements in R? values, which is also mirrored
326 by improvements in RMSE and r.

327

328 Table 4: Feed-forward feature selection process.

Target Step Chosen Feature | R? RMSE r
Variable

FCO2 1 Air Temperature 0.66 1.62 0.82
FCO2 2 Water Table Depth | 0.68 1.57 0.83
FCO2 3 Bare Soil 0.70 1.54 0.84

Evaporation

FCO2 4 Blue Reflectance 0.71 1.50 0.85

FCH4 1 Canopy 0.52 0.054 0.73
Temperature

FCH4 2 Near-Infrared 0.58 0.051 0.76
Reflectance

FCH4 3 Total 0.60 0.050 0.77

Evapotranspiration
329

330  Figure 3 shows both FCO2 and FCH4 results, including time series and scatter plots comparing
331 predictions to observations. Overall, the predicted values track the observations reasonably
332  well. For FCO2, predictions tended to regress toward the mean, underestimating peak

333 emissions at local maxima and overestimating at local minima. The ML models also displayed
334 less interannual variability than the observations, common in machine learning approaches

335 (Ouyang et al., 2023). For wetlands, this is likely due to limited subsurface process information
336 included in the machine learning models. Still, the scatter plot shows strong performance for
337 FCO2(r=0.84, R2=0.71, RMSE = 1.49 gC-CO, m2day™"), despite a noticeable spread around
338 the 1:1line.

339 FCH4 predictions exhibited similar behavior, with lower interannual variability than the

340 observations. At the US-Myb site, for example, observed FCH4 were initially high (aside from
341  the first year, when vegetation cover had yet to be fully established) but declined over time,

342  stabilizing at lower values. The ML models captured this shift to some extent, predicting higher
343  fluxes early in the time series and then modulating to lower levels later on. However, predictions
344  did not fully replicate the magnitude of the observed downward annual trend, introducing bias
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345 into the scatter plots at higher and lower extreme values. This phenomenon is known as

346  regression to the mean, observed in similar machine learning studies (Ouyang et al., 2023).
347  Consequently, the FCH4 model performance was weaker than the FCO2 model (R>= 0.61,r =
348 0.78, RMSE = 0.05 g C-CH4 m2day"), indicating that the processes controlling FCH4 in

349  younger wetlands like US-Myb may require more detailed subsurface information (such as soil
350 organic C, oxygen, or redox information) to be accurately modeled.

351  The annual bar plots presented in Figure 4 highlight the model’s difficulty in capturing the

352 interannual variability of carbon fluxes across the study sites. While the average FCO2 and

353  FCH4 predictions are generally aligned with observed average values with small overall mean
354  bias, the model struggles to reproduce the observed year-to-year variability. Although direct
355  subsurface measurements are available at certain sites, at the regional scale their limited spatial
356  and temporal coverage currently limits integration into models designed for regional upscaling
357  over inter-annual timescale. For example, while spatial maps of wetland soil organic carbon
358 exist (Uhran et al., 2022), using only three sites for training purposes would provide just three
359  corresponding data points, limiting model training. The LOSO validation approach revealed that
360 deep learning models, particularly LSTM and GRU, consistently outperformed traditional linear
361  regression and other machine learning methods for both FCO2 and FCH4 predictions. While
362 nonlinear models demonstrated clear advantages, the magnitude of improvement was relatively
363 modest, reflecting the inherent challenges of capturing site-specific inter-annual dynamics of
364  wetland emissions. To improve model performance, additional techniques such as feature

365 transformations or attention mechanisms could be implemented. However, the primary goal of
366  this model suite is to ensure reproducible results with ‘off-the-shelf models, which serves as a
367  foundation for more advanced, nuanced approaches.

368
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378

379
380 3.2. Model Application: Upscaling

381  After selecting LSTM as the model of choice, it was retrained using all available data from the
382 three sites for upscaling.. The Sacramento-San Joaquin Delta contains roughly 700km? of

383  wetland area, including tidal and nontidal regions. The upscaling domain encompasses

384  approximately 25 km? of nontidal wetlands in the region, dominated by vegetation types relevant
385 to the training sites, specifically Tules, Cattails, and Phragmites. The assumption is that the

386 training sites used in this study are representative of the broader conditions in the Delta, but we
387  acknowledge that local variability in carbon dynamics, such as those caused by microclimates
388  prevalent in the area, may not be fully captured during the ML model training. Improvements to
389 the model might be achieved if additional site data covering a wider range of environmental

390 conditions were incorporated. The feature data used to optimize the model were spatially

391  interpolated onto the regional model grid and the model applied to yield flux estimations.

392  Although relatively modest in spatial extent, these wetlands are of particular interest given their
393 role in carbon sequestration and potential climate mitigation and as targets for conservation and
394  restoration.

395  Figure 5 displays spatial maps of annual flux estimates of Net Ecosystem Carbon Balance

396 (NECB), methane flux (FCH4), and the CO, equivalent flux rate (FCOZ2e) in the study domain .
397  The results show that carbon sequestration, indicated by negative NECB (green) values, are
398 notably stronger in the more northern parts of the domain, which is likely driven by air

399 temperature (dominant feature), with this region of California being subject to distinctive

400 microclimates. In contrast, FCH4 shows a comparatively uniform spatial pattern, which was also
401 observed in the model validation. Similar to NECB, the FCO2e distribution shows strong

402 Ilatitudinal dependence, with a net CO»e sink in northern zones and a tendency toward

403 emissions in the southern portion of the study area, though localized heterogeneity exists.

404  Figure 6 shows averaged fluxes in the upscaling domain over the full study period. The results
405 highlight the Delta as an overall carbon sink, with NECB averaging approximately -380 gC m™
406 yr™', indicating persistent sequestration across multiple years. CH, fluxes average 28 gC-CH,
407 m™2yr ', and shows little spatial variability. Values are consistent with those previously reported
408 in the region (Arias-Ortiz et al., 2021). Integrating these fluxes into a CO,-equivalent metric, this
409 regional wetland system remains a net sink of CO2 e, with approximately 400 gCO,e m™2 yr™’
410 sequestered on average in the upscaling domain.
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spread of values. Each row represents a different flux variable: (a) NECB, (b) FCH4, and (c)
FCO2e.

415
416

417
418 4. Discussion

419  This study demonstrates the development and evaluation of a data-driven framework to upscale
420 terrestrial CO, and CH, flux estimates for non-tidal wetlands in the Sacramento-San Joaquin
421 Delta. By systematically comparing models of varying complexity, including linear regression,
422  ensemble methods, gradient boosting algorithms, and recurrent neural networks (RNNs), we
423  presented a transparent assessment of model performance. The goals were to identify the

424  model that best predicts CO, and CH, fluxes and critically appraise whether incremental

425  complexity is justified by improvements in predictive capacity. Relevant cited works have

426  included many different machine learning approaches for predicting emissions. This work aims
427  to unify modelling efforts by establishing a standard framework for developing robust data-

428  driven models, particularly for upscaling purposes.

429  Our results indicate that non-linear and more advanced models generally outperformed simple
430 linear regression approaches. Among all tested models, the Long Short-Term Memory (LSTM)
431  and Gated Recurrent Unit (GRU) neural networks provided the highest overall skill in predicting
432 both CO, and CH, fluxes at daily timescales. This improvement was marginal but consistent,
433  supporting the notion that time-series models, which inherently capture temporal dependencies
434  and non-linearities, can provide tangible benefits over linear methods and traditional machine
435  learning algorithms.

436  However, while these deep learning models performed best, the performance gains were not as
437 large as might be expected given their significantly higher complexity and computational

438 demands. Similar outcomes have been noted in other ecological modeling applications, where
439 advanced machine learning methods yield improvements that are statistically significant yet
440 modest in terms of performance gains relative to linear models (Oh et al., 2022; Wood, 2022).

441 The deep learning models provided reasonable estimates of daily fluxes but struggled to

442  replicate the full range of interannual variability observed in the field measurements, which is a
443  common issue for data-driven models in this field (Nelson et al., 2024). This limited ability to
444  capture long-term trends and extremes mirrors common challenges in machine learning-based
445 modeling, where the absence of explicit mechanistic understanding limits extrapolation beyond
446  the conditions represented in the training data. The difficulty in reproducing interannual

447  fluctuations was particularly evident for CH, fluxes, an outcome consistent with the high spatial
448  and temporal complexity of CH, cycling in wetland environments and the limited availability of
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449  subsurface parameters (e.g., oxygen concentration, redox conditions, substrate availability) that
450 drive CH, production. This may not be surprising as the number of annual cycles available in
451  the training set was only 35 years.

452  The observed regression to the mean and the reduced dynamic range in model predictions may
453 reflect insufficient representation of key environmental drivers in the feature set or inadequate
454  temporal coverage and variability in the training data. While publicly available datasets such as
455 WLDAS and MODIS were effective at providing spatially and temporally comprehensive inputs,
456  the lack of direct subsurface and soil biogeochemical measurements likely limited the model’s
457  ability to capture critical internal processes that are likely causing the observed differences

458  between years. Although the feed-forward selection process for the model features had access
459 to an extensive pool of relevant features, results indicated that only a small subset of features
460 was necessary to maximise performance. This suggests that, while there are many features that
461  control CO2 and methane, their contribution to predictive accuracy may be redundant or

462  captured indirectly by other variables. The exclusion of particular features, such as the water
463  table depth for FCH4, illustrates the trade-off between mechanistic intuition and data-driven

464  optimization. Strong correlations between features and limited independent variability can lead
465 to features being left out that would typically be considered ecologically relevant.

466  After applying the chosen model (LSTM) to calculate CO2and CHsfluxes, we estimated NECB
467  and CO,-equivalent fluxes for similar wetland settings across the Delta region. The results show
468  spatial heterogeneity and pinpoint regions that act as stronger net carbon sinks, as well as

469 areas where CH, emissions may offset climate benefits of net carbon sequestration. Such

470 insights support targeted conservation and restoration strategies aimed at maximizing net

471 carbon sequestration benefits, facilitating ongoing efforts to restore and manage wetlands to
472  contribute to net-zero emission goals.

473 A key advantage of the chosen approach is its reliance on readily available, open-source data
474  streams and standard computational resources. The framework can be deployed efficiently
475  without specialized hardware, making it accessible to resource-limited organizations,

476  practitioners, and researchers.

477  The primary objectives of this study were to identify a suitable model, contextualize model
478  performance by comparing to a baseline linear regression, and highlight trade-offs between
479  complexity, interpretability, and accuracy. By explicitly testing multiple models ranging from
480 simple linear regressions to advanced recurrent neural networks, we demonstrated that

481 complexity alone does not guarantee a substantial increase in predictive power. Instead,

482  complexity should be adopted judiciously, based on the magnitude of performance gains, the
483  cost of model implementation, and the level of interpretability.

484  We suggest that future modeling efforts should focus on deriving mechanistically relevant

485  predictors (Ouyang et al., 2023), and incorporating hybrid modeling approaches (Yao et al.,
486  2023) that combine the strengths of process-based and machine learning methods. Attention
487  mechanisms (Yuan et al., 2022), advanced architectures (e.g., Transformers (Vaswani, 2017)),
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488  or physics-informed machine learning (Raissi et al., 2019) may also help address model
489  performance limitations.

490

491 5. Conclusions

492

493  This study provides a transparent, methodical demonstration of an artificial intelligence

494  approach to modeling wetland carbon dioxide (CO.) and methane (CH,) emissions, using a
495  suite of “off-the-shelf” tools and establishing a standardized benchmarking protocol for model
496  performance evaluation. In the study region (the Sacramento—San Joaquin Delta), inter-model
497  comparisons revealed modest but appreciable performance differences when comparing

498 advanced models with a linear regression baseline. While there are tangible benefits to

499  employing machine learning for these purposes, it is likely that the gap between simpler models
500 and more sophisticated models will widen as data quantity and quality continues to increase.
501 Ultimately, this study lays the groundwork for regional scale model benchmark testing,

502 facilitating the development of more advanced modeling approaches that can guide wetland
503 management, restoration planning, and climate mitigation strategies.
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